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ABSTRACT 

The previous developments of the disturbing function of a first order general plane- 
tary theory involved commonly only one disturbing planet. They were performed by con- 
sidering the inclination of the orbital plane of the disturbedplanet on that of the disturbing 
planet o r  vice versa, that is to say by considering the mutual inclination and by referring 
the longitudes to the longitude of the ascending node of the disturbed o r  of the disturbing 
planet. In the present paper, we perform a more general development of the disturbing 
function by considering n planets instead of two ( n  > 2), by referring the inclination of each 
of those n planets to a common fixed plane, by referring the longitudes to a common origin 
and by reducing the Fourier ser ies  of the principal part  of the disturbing function to the 
sum of its n( n -  1) ( p  + 1)/2 first terms, the positive integer p being unspecified. The de- 
velopment of the principal part and that of the indirect part of the disturbing function are 
performed up to the fourth powers of eccentricities and the sines of inclinations and they 
could be easily extended to the eight powers required for the building of acomplete first 
order general planetary theory. 



ON A GENERALIZATION OF THE DEVELOPMENT OF THE 
DISTURBING FUNCTION 

. 

INTRODUCTION 

The building of a first order general planetary theory through Von Zeipel's method 
and, more precisely, its first  step dealing with the elimination of the short period terms 
requires a suitable development of the principal and of the indirect part of the disturbing 
function according to the powers of eccentricities and inclinations and according to the 
cosines of the multiples of the mean longitudes, the longitudes of the nodes and the longi- 
tudes of the perihelia. In the case of only one disturbing planet, those developments are 
usually performed by referring the orbital plane of the disturbed planet to the orbital 
plane of the disturbing planet or  vice versa, and by considering the inclination of the 
former on the latter that is to say the mutual inclination, the longitudes being calculated 
from the longitude of the ascending node of the disturbed or  of the disturbing planet. Such 
developments a r e  those of LeVerrier' and Newcomb' and their effective calculation up to 
the third powers of eccentricities and mutual inclination a r e  recalled by Brouwer and 
Clemencej who include also in the principal part of the disturbing function those of the 
t e rms  of order four with respect to the eccentricities and mutual inclination which arise 
from its secular part. A s  points out Marsden in his thesis, "This procedure is useless 
when one is dealing with more than two bodies at oncetT4 and it is then much better to r e -  
f e r  the inclination of each planet to a common fixed plane, the longitudes being calculated 
from a common origin. According to  Marsden's remark, "the increase in complexity when 
one transfers to a general coordinate system is considerable but not unmanagable." We 
managed this development, both for the principal part and for the indirect part  of the dis- 
turbing function, up to the fourth powers of eccentricities and inclinations. We considered 
n planets that is to say one disturbed planet and n - 1 disturbing planets. We calculated the 
indirect part of the disturbing function through Newcomb operators and the principal part  
of the disturbing function through Newcomb operators and Laplace coefficients. We re- 
duced the Fourier ser ies  of each of the n ( n  -1)/2 t e rms  of the principal part  of the dis- 
turbing function to the sum of i ts  p + 1 first  terms. In doing so, we generalized a previous 
result  of Andoyer who indicated, in the case of only two planets, a development of the dis- 
turbing function according to the powers of the eccentricities and to the powers of twice 
the sines of the semi inclinations, the latter being referred to a common fixed plane. 

NOTATIONS AND PRELIMINARY CALCULATIONS 

P, disturbed planet referred to the Sun S ,  

P, disturbing planet referred to the center of mass of s and q ,  

Pn disturbing planet referred to the center of mass of S , P, , . . . , Pn-l  , 
m mass of s , 
c small  parameter of the order  of the masses of P, , . . . , Pn , 
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p, , * , p, finite numerical coefficients, 

p1c mass of P, , 

pnu mass of P,, 

r o 2  distance between S and P, , 

r O n  distance between s and Pn , 
r 2  distance between P, and the center of mass of s and P , ,  

r n  

r 1 2  

distance between PI, and the center of mass of S ,  P, 

distance between P, and P, , 
. . . , Pn-,, 

' n - 1 . n  distance between pn- , and pn 

a l  semimajor axis of the osculating ellipse of P, , 

a 

k 2  constant of gravitation. 
semimajor axis of the osculating ellipse of pn ~ 

The Hamiltonian F of the 6 n  canonical equations of the  n planets ( n  2 2) is: 

I < i < j  < n  

We assume that each of the n ( n  - 1)/2 ratios r l  / r 2 ,  . . . , r n - ,  / r n  is smaller than one 
and we develop F in a Taylor series of c according to the formula 

0 2  

2 
F(m) = F ( O )  t U F ' ( 0 )  t - F " ( 0 )  t * . *  

We reduce F to the sum F (0) + u F'(0) and we put F (0) = F, , U F '  (0) = F, . We have: 
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0 being the angle of the vectors FU and t .  ' .  U.V 

We restrict ourselves to the consideration of the two expressions 

-u k2 c 
u c v  

' u k Z  

I The first one is the indirect part  of the disturbing function and we call if ( F ~  )I ; the second 
one is the principal part of the disturbing function and we call it ( F ~  )p .  We calculate 
separately ( F ~  ) I  and ( F ~  ) p .  

CALCULATION O F  (F1 ) p  

1" We put 

and 

We call I i  the inclination of the orbital plane of Pi on a common fixed plane of reference 
and we put s i n  = yi , ( i  = 1, 2, . . . , n).  We call e i  the eccentricity of the osculating 
ellipse of Pi and we introduce the variables hi, Wi, Ri which are connected to the mean 
longitude ti the longitude gi of the perihelia and the longitude hi of the ascending node 
Of Pi through the equalities: hi = ti + gi + hi,  ai = gi + hi,  Ri = hi. We call b(,j I 1 I z), . e ,  bs( j 

the Laplace coefficients defined by the equalities. 

- 
9 ) 

with 
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We have 
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x COS ( ( j  + 1) A,, - ( j  - 1) Av - Z,, - Zv) 

x cos( ( j  + 1) A,, - ( j  t 1) Av -Zu t Z v )  





17 11 . 1 1 .  1 
te :  (% 1 3 .  J t g 1 2  5 .  t i j 3  t ( - 4 8 - G  1 

6 D u , , t  (& ti 1) D:,v-G D:,,) b$>;u*v) 

X COS ( ( j  t 3) A,, - j A, - 3 3 )  

1 3 .  5 .  1 .  1 1 .  1 .  
24 8 6 

t e: (- - 1 t - 12 - - 13 t (- 11 48 t 16 1 - 4 12) D ~ , ~  t (6 - 





x cos ( ( j  - 4)Au - j A, t 4WU) 

2 7 .  7 .  1 .  13 . 11 13 . 1 j 4  + (-E t - 1 t -  1 2  t -  13) D ~ , ,  
te:ev (G 1 - 4 8  j 2 - 2 i 3 - 6  9 6 %  8 3 

t (- - - - 1 - - j y  D:,, t (A t 1 1 5 .  1 1 
12 32 4 

x cos ( ( j  + 3) A,, - ( j  - 1) A, - 3zu - ;,) 
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13 . 41 . 17 . 1 . 4  
te;ev (a J tz J 2  +g J 3  $ 6 1  t 

I \ /. . \  \ i 
+ -  24 j )  Du,v - %  D:,.) b(j.u.v) 1 / 2  

3 1 1  ' i  
+ (-E - 32 2 9 D i , v  t 

x cos ( ( j  t 3) hu - ( j  t 1) Av - 3 Gu + E") 

te ;  e,, (-- 48 13 j +41 48 j 2  -2 24 j 3  +.L 6 j 4  + D u . v  

x cos ( j  - 3) Xu - ( j  - l )hv  + 3 C ;  - w v )  



x COS ( ( j  - 2)  A, - ( j  - 2) A, t 2 Zu - 2 W,) 

27 1 1 .  1 .  1 .  
96 96 2 6 

( 2 7  7 . 3  1 .  
+ e u  e: - +z j2  +- 1 t - J 4  t -- t - j  + -  j 2  + -  1 3 )  DU,, 48 48 8 6 

1 9  7 . 1 1  1 
+ (-48 - ~ 1 )  D:,, t ( -T-  24 j )  Di,, - 96 D:,,) b $ > i U * , )  



J t - J  - - J 3  + - I 4  t 27 11 
96 96 

27 . 65 . 2  7 . 1 . 
48 48 8 6 

x cos ( ( j  - 1) A, - ( j  - 3) Av t Z, - 3 zV) 

256 323 . 499 . 2  - '9 j 3  1 j 4  + 65 9 3 ,  5 j 2  - - I j 3 )  Du,V 
192 ' 384 48 24 64 64 8 12 

x cos ( j  k, - ( j  - 4) Xv - 4 Gv) 



t C Y , "  Y ,  - Y ,  Y ; )  Ka:,v 3 b$;"*" 

cos ( j  A, - j A, t 0, - 0,) 3 
t (-Y," Y ,  - Y ,  Y:) 32 a:,v b$j:2,u*v) 

- ( j  - 1) A, - W, - R, + 0,) 1 1 .  1 
t y ,  y ,  e ,  ( T - T j  taD,,,) 2 b ( j - l * u * v )  3/2 cos ( j  A, 

cos ( j  A, - ( j  t 1)  A, t W v  t nu - R,) 1 1 .  1 

1 1 .  1 
-I Y ,  Y ,  e ,  ( 7 - T ~  t-D, 4 ) %b(j+l,u*v) 2 3/2 COS ( j  A, - ( j  - 1) X, - Wv + R, - a,) 
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cos ( ( j  t 2) A, - j A, - 2 Z, -nu + 0,) 

COS ( ( j  - 2) A, - j A, + 2 Z, +nu _- 0,) 

cos ( ( j  t 2) A, - j A, - 2 W u  t 0, - nV> 

cos ( ( j  - 2) A, - j A, t 2 Z, -0, t 0,) 

c o s ( ( j  t l ) A , - ( j  - l ) A V - G u - Z V - ~ u  to,) 

- - J - - I ’ +  1 .  1 .  ---- 1 1 .  b(1,l.U.V) 
4 2  ( 8 2 1) D u . v - i D : , v )  3 / 2  

COS ( ( j  - 1) A, - ( j  t 1) A, + Z, t z, + a,, - 0,) 

cos ( ( j  t 1) A, - ( j  - 1) A, - Z, - Zv t R, - R,) 

16 



cos (( j - l ) A ,  - ( j  - 1) A, + Z, -Z, t 0, - a,) 

COS ( ( j  t 1)A, - ( j  + l ) A ,  - Wu + W, + 0, - R,) 

- -  
cos ( ( j  - 1) A, - ( j  - 1) A, + w, - w, -a, T a,) 

u . v  b(j-1.u.v) ) 3 / 2  
2 (1- - 9 .  1 t -  1 j 2  t ( -  5 ---I) 1 .  D , , ,  + K~i,v 

4 16 4 16 4 + Y, Y, e, 

cos ( j  A, - ( j  - 2 ) A v  - 2 "  -0, t R , )  

cos ( jA ,  - ( j  + 2)Av +2w, + a,, - 0,) 

cos ( j  A, - ( j  - 2) A, - 2" t a, - 0,) 

17 





y b $ j ; y * v )  cos ( ( j  - 1) A, - ( j  t 2) AV t Zv t 2 nv) 

j Xv - zv + 2 nv) t y: eV (5-1 3 1 .  1 + T D u , v )  1 %b$;;".') cos ( ( j  - l ) A ,  - 



- - - I  9 13. t - J 2 t  1 .  (-E-tj) 7 Du,vtAD:vv) %bi:;u.v) 
16 16 4 

COS ( ( j  + 1) A,, - ( j  + 1) Av - 2 Zu + 2 nv) 

ty:e: -L+?J +Lj2+( ") Du,v+gD:,v -b(J.u.V) ( 16 16 4 5 + T J  ) 3 / 2  

COS ( ( j  - 1) A,, - (j - 1) Av + 2 Z,, - 2 0,) 

1 f n 1 . 1  + - I  - - J ~  + I l l . \  ( - 1 t . l ~  1 DU,v \ a  4 2 8 2  + r; eu ev 

cos ( ( j  + 2) A,, - ( j  - 2) Av -Zu -Zv - 2 Rv 

a 1 1 .  1 . 2  1 1 .  1 U . V b ( j , . , V )  T - T ~ - - ~  2 t ( ---- 8 2 I )  DU.V'gD:,V) 4 3 / 2  

cos ( ( j  - 2)  A,, - ( j  + 2) hV t W,, t Zv t 2 a,) 

1 1 .  1 . 2  1 1 .  ) ~ b ~ ~ ; " * ' )  cos ( j  A,, - j Av t" + Zv - 2 0,) 

1 1 .  1 .  3 
( 4 4  2 8 

-LD:,v) k b  4 3 / 2  ( J * u ' v ) ~ O ~  ( ( j  t 2) Au - j hv -Zu +Z, - 2 flv) 
8 +Y:  eu e,, - - + - I  t - i2  +-D,,,~ 



cos ( ( j  t 1) A,, - ( j  - 3) A, - 2 Z, - 2 0,) 

a 2 2 1 7  1 7 .  1 .  9 1 .  1 t y v e v  ( 16 161  t - J 2  4 t (16-31) Du,, + E D : , , )  y b $ j i U * V )  

cos ( ( j  - 1) A,, - ( j  - 1) A, - 2 Zv t 2 a,) 

21 







a 
bS$;".') COS ((j - 2) A, - j Av t Z, - Wv t 2 nu) +Y; e ,  e., (-7-71 3 1 .  $5 1 .  J z  -gD,,,, 5 -go:,,,) 1 7 

a 
+ Y : p u e v  - - + - J  1 1 .  t - J z  1 .  t - D u P v  3 1 u * v b ( l . U . V )  3,2 cos ( j  A, - (j t 2) Av -Z, t Z,, t 2 0,) 

( 4 4  2 a 

17 16 1 7 .  t - j 2  1 
t ( 9  16 -ij) 4 ty:e: ( - -  4 D,,,, 

COS ( ( j  + 1) A, - ( j  - 3) A,, - 2 Zv - 2 nu) 



COS ( ( j  - 1)A, - (j -1) A, - 2" + 2 0 , )  

1 1 .  1 .  
+y, 'e:  - - + -  J + - J 2  t (  +'j) D u , , t G  D:,, b ( j . u , v )  ( 16 16 4 16 4 ) 3 / 2  

C o s  ( ( 1  t l)Au - ( j  + 1) Av + 2" - 2 9 )  

-4Y, Y, - - 1 Y, Y: - - 1 Y," Y,) a,," bij;"*v' 
32 32 

a 
t j + -  1 .  j 2  - 8 D u , v  1 - aD:,v)  1 y b $ ; ; " * v )  2 

25 



+ ( 2 Y i  Y, + Y, Y;) - 3 a:,, b$j;'.u*v) COS ( ( j  - l ) A ,  - ( j  + l ) A v  +a, +a,) 32 



- - - + - - I  1 1 .  t - 1 2  1 .  t ( g  1 t l .  D,,, t+:,,) a y b i j ; " * ~ )  
4 4  2 

cos ( ( j  - 2) A, - ( j  t 2) A, t z,, t E,, t a, t a,) 

a 
- - t - j  1 1 t - - 1 2  1 .  t ( g t T i )  1 1 .  D,,, tzD:,.,) 1 ~ b i j ; , . ~ )  4 4  2 

cos ( j  A, - j A, t z, t z, - 0, - 0,) 

) a 2  3 / 2  
ty ,  y v e u e v  (4-4~ 1 1 .  L2-LD ,,, t z D ; , ,  " . Y b ( i s U * V )  

cos ( ( j  t 2) A, - j A, - Z, t zv - 0, - 0,) 

27 



a 
- - + - I  3 1 .  - - i 2 t -  1 .  16 5 DU,,, t,D:,,) 1 Y b $ > ; " " )  4 4  2 

COS ( j  A,, - ( j  - 2) A,, t G,, - Z,, - nu - a,,) 

c o s ( ( j  t l ) A , - ( j  - 3 ) X v - 2 Z v - R u  -Rv) 

a + Y u Y v e u e v  ( : t f j - F J 2 t -  1 .  16 5 D,,, tTD:,,,) 1 ~ b $ ~ ; u p v )  

- - - j - - J - D, , ,, + D:, ,) ".' b( J * * ) 

cos ( ( j  - 2) A,, - j A,, t Z, - ZJ, t Q, t nv) 

a 1 1  1 .  3 1 
4 4  2 2 3 / 2  

cos ( j  A,, - ( j  t 2)  A,, - Z,, t Z, t R,, t R,) 

a 3 1 .  1 .  16 5 DU,,, .,.a,,) 1 Y b $ ; ; " * ' )  
- - + - I  - - i 2 + -  4 4  2 

COS ( j A,, - ( j - 2) A,, t Gu - Z,, - nu - R,) 

a + ( -% 9 t 7 j )  1 .  a,,,, -E 1 D:,,) Y b $ > ; " * ' )  

Cos(( j  t l ) A , - ( j  - 3 ) X v - 2 Z v - R u  -Rv) 

- 1 - - 1 .  J - _  1 .  J Z  t ( - - 1'6 - _  : j )  D,,, -GD: ,v )  1 L b ( J . ' * v )  16 16 4 2 3 / 2  

cos (( j - 1) A,, - ( j t 3) A, t 2 W,, t R,, t a,,) 

a 
y b $ j ; " . ' )  

C O S  ( ( j  - l)Au - ( j  - 1) A, - 2 W, t au  t 0,) 

1 1 1 .  1 1 _ - _  j - - - J Z +  ( - _ - -  16 j)  D u , ,  - D:,,) +b$?iu*') 1 6  16 4 

c o s ( ( j  t l ) A , , - ( j  t l ) h V  t 2 W  -a,,-n,) 

28 

a ( - -  9 1  t - j )  D u , v - E D : , v )  1 y b $ j ; " . " )  16 4 

cos ( ( j  - l)Au - ( j  - 1) A, - 2 W, t nu t 0,) 



ty,, y; 3 ai. ,  b$;'.u.v) cos ( ( 1  + ' )A,  - ( j  - 1) A, t 0, - 30,) 32 

3 
32 + Y, 7; - ai, , bi ;i ' * ) COS (( j - 1)  A,, - ( j t 1 )  A, - 0, + 3 0,) 

+ Y : Y v $ L  b(J-l*u*v)cos 5 / 2  ( ( j  t 1 )  A, - ( j  - 1) A, - 30, t 0,) 

3 + Y ~ Y , ~ ~ ~ , v b $ ~ ~ ' ~ U ~ v ) ~ ~ s ( ( j  - l ) A , - ( j  t 1 )  A, + 3 0 ,  -0,) 

b$>iUmV)cos ( ( j  t 2) A,, - ( j  - 2)  A, - 40,) 3 
128 

ty: - a 2  

+y,  4 3  = a i , ,  b$>i"*V)cos ( ( j  - 2)  A, - ( j  + 2) A, t 4 0,) 

+y,, 4 3  = a i , ,  b$>;u*v) cos ( ( j  t 2)  A,, - ( j  - 2)  A, - 4 nu) 

COS ((j - 2) A, - ( j  + 2) A, t 40,) t 128 a i ,  , b$>iuSv 3 

+Y,YVsa~,,  2 2 9 

t y ~ y ~ 6 4 ~ ~ , . ' b ( j ~ u ~ v ) ~ ~ s ( ( j  9 - 2 ) A u - ( j  + 2 ) A V + 2 n u t  20,) 

b(J.U.V) 5 / 2  cos ( ( j  t 2 ) A u  - ( j  - 2 ) A V - 2 0 , , - 2 2 , )  

5 / 2  

3 2  - Y,, 7; a,, , b$ji"*") cos (( j t 2) A, - ( j  - 2) A, - 0, - 3 0,) 

- Y , , Y ~  32 3 a,,,, 2 b(1,U.V) 5 / 2  cos ( ( j  - 2 )  A,, - ( j  t 2) A, +a,, +3nV) 

3 
32 

-7: y, - a i , ,  b$j;u*v) cos ((j t 2) A,, - ( j  - 2) A, - 3 0, - 0,) 

COS ( ( j  - 2) A, - ( j  + 2)  A, t 3 0, t 0,) 3 b(J 3U.V) 
- 2 'V 32 5/2 

29  



2" from (I) ,  we obtain at once the new Hamiltonian (F;), which results from the elimi- 
nation of the short period terms of (F, ), and which i s  connected to (F,),, according to Von 
Zeipel's method, through the equality: 

I - 1  = (F;)p (a i ,  . . . , a i ;  e ;  , . . . , e,#,; 7 ; .  . . . ,y,; w1 , . . . , = A ;  , . . . ,O,#,) 

the accented letters a;, . . . , 0; being the new variables which correspond respectively 
to the old variables al, . . . , a, . 

W e  have: 
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3" Each t e rm 

42 p v  o k 2  - 
r V  

32 



of (F, )p has been obtained by applying the operator 

to the corresponding term 

pu pv 1 

1 - 2 
vk2 - 

cos  eu ,v  t a,',, 
aV 

of an ( F, ) p  in which the orbits would be circular, f U  being the true orbital longitude of P, , 
f v  the t rue orbital longitude of Pv,  and relative integers respectively equal to j and 
- j for a te rm of class zero in the Newcomb sense, to j + 1 and - j + 1 for  a term of class 
one in the Newcomb sense, to j + 2 and - j + 2 for a te rm of class two in the Newcomb 
sense, . . . Let us  call "circular ( F , ) ~ "  such an (F, ) p .  In ( l ) ,  each of the 69(n- l )n(p+1)/2 
first te rms  arises from the corresponding te rm of the circular (F, ) p  which is of c lass  zero 
in the Newcomb sense; each of the 84( n - l ) n  ( p + 1)/2 next te rms  arises from the cor- 
responding term of the circular ( F ~  )p which is of c lass  one in the Newcomb sense; each of 
the 10(  n - 1) n(P  + 1)/2 last te rms  arises from the corresponding term of the circular 
( F l ) p  which is of c lass  two in the Newcomb sense. In (2), each of the 7( n - 1) n ( p  + 1)/2 
first te rms  arises from the corresponding te rm of the circular (F;)p which is of c lass  zero 
in the Newcomb sense; each of the 9( n - l ) n (  p + 1)/2 last te rms  arises from the cor- 
responding te rm of the circular ( F; )p which is of class  one in the Newcomb sense. NO 
te rms  of class two in the Newcomb sense appears in the circular (F;)p in so far as we 
neglect the powers of eccentricities and inclinations higher than the fourth. 

CALCULATION OF ( F1 ) I  

We have: 
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1 
6 

+ -e:  c o s  (A, + 2Av - 3 0,) 

16 
3 

+ - e: cos  (A, - 4 A, t 3 W,) 

125 
384 

t - e: c o s  ( 5  A, - A, - 4 W,) 

3 
128 + - e: c o s ( -  3 A, - .Av + 4 Z,) 

2 
3 + - e: e, c o s  (4 A, - 2 A, - 3 Zu + z,) 

1 
t et e, cos ( -  2Au - 2 A v  t 3 W, + W,) 

3 
64 

+- e,' e,' c o s  (34, + A, - 2 Wu - 2 W,) 

81 
64 t - e,' e,' c o s  (3  A, - 3 A, - 2 W, t 2 W,) 

1 
64  

+- e: e t  cos(-  A, t A, t 2 wu - 2 w,) 

27 
64  

+ - e: e: cos  ( -  A, - 3 A, + 2 z,, t 2 W,) 

1 
12 

+ - e, e: c o s  (2 A, t 2 A, - W, - 3 W,) 

8 
3 

+ - e ,  e: C O S  (2  A, - 4 A, - Wu + 3 W,) 

1 - e, e: cos (2 A, + W, - 3 Z,) 

+ 8eu e: c o s ( -  4 A, t Gu + 3 Z,) 
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3 
8 

- - e,, y :  C O S ( A ~  + G, - 2 0,) 

1 
t eV y', C O S  (A,, + 2 Av - Zv - 2 4) 

3 + - e,' y :  COS ( 3  A,, + Av - 2 Z, - 2 0,) 32 

1 
32 

+ - e2 y f  C O S  ( -  A, + A, t 2 Z, - 2 0,) 

1 
4 

+ - e,, ev y :  c o s  (2Au + 2 A,, -Z, - W v  - 20,) 

3 
4 

- - e,, ev y: c o s  ( 2  kv + Z,, - Wv - 2 0,) 

27 

32  
+ - e', r', cos  (A, + 3 Xv - 2 W, - 2 a,,) 

1 
32  

+ - e t  y :  C O S  (A, - Av + 2 Zv - 2 0,) 

t c o s ( A u + A v - 2 n u )  
16 

- 1 
8 

+ - e ,  y i  c o s  (2Xu + Av - w, - 2 0,) 
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3 
8 

- - eu y: c o s  (A, t Gu - 2 nu) 
I 

I 
1 
2 

t - e, y,' C O S  (A, t 2 A, - Z, - 2 0,) 

3 
32 + - e,' Y,' C O S  (3 A, t A, - 2 G, - 2 nu) 

1 
t 32 e,' Y,' c o s ( -  A, t A, t 2 Z, - 2 Q,) 

1 
4 t -eU e, Y,' cOs(2Au t 2 A, - Zu - S, - 2 R ) 

3 2 

4 
- - eu e, Y, COS (2 A, t E, - Zv - 2 flu) 

27 
32 

t - ef y: COS(X, t 3 A, - 2 S, - 2 R ) 

1 
32 

t - e: yi cos(Au - A, i 2 Z, - 2 nu) 

) t (f Y, Y, - - e, Y, Y, -- ef ru Y, c o s  (Au 
1 2  1 
4 4 

1 
4 

t - eu yu y, c o s  (2 A, - A, - 0, - flu t 0,) 

3 
4 

- - e, yu y, c o s  ( - A, tz, - 0, t a,,) 

t e, y, y, cos(Au - 2 A, t G,, - nu t a,) 

3 
t 16 e,' yu y, c o s ( 3  A, - A, - 2 Zu -nu t Rv) 

1 
16 + - e: y, y, C O S (  - A, - A, i 2 G, - R u to,) 
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1 - 7 e, Y,  Y, C O S  (2  A, t A, - Wu - R, - 0,) 

- e  v Y,  Y, COS(A, t 2 A, - W, - R, - R,) 

3 
16 - - e: Y,  7, C O S  (3 Xu t A, - 2 Z, - 0, - 0,) 

1 
16 e, Y, Y, C O S  (- A, t A, t 2 Gu - R, -0,) - _  2 

e, e ,  y,  y, c o s ( 2  A, t 2 A, - Z, - W, - 0, - 0,) 1 
2 

- -  

3 
2 

t - e, ev y, y,  c o s  ( 2  A, t Z, - Z, -nu - 0,) 

- -e," 27 y ,  y ,  c o s  (A, t 3 A, - 2 Wv - 0, - 0,) 
16 

. 



Each term 

r 
- c k 2  pu fi, 2 c o s  B u , v  

r t 
of ( F1), has been obtained by applying the operator 0 to the corresponding term 

u , v  
U 

- c k Z  pu fi, - C O S  8u,v 
aV 

of the circular (F, ) I  , the integers p and q which appear in 0 verifying successively each 
of the four equalities 

CONCLUSION 

1. In considering n planets instead of two, their inclinations with respect to a com- 
mon fixed plane instead of their mutual inclinations, in referring their longitudes to a 
common origin instead of referring them to the longitude of the ascending node of the dis- 
turbed or  of the disturbing planet and in reducing the Fourier ser ies  of the principal part  
of the disturbing function to the sum of its ( n - 1) n ( p  + 1)/2 first terms, the value of the 
positive integer P being not specified, we obtained an expression of the disturbing function 
much more general than the previous ones. We point out, by the way, that in each argu- 
ment, the sum of the coefficients of the longitudes is equal t o  zero and that the sum of the 
coefficients of the X i ' s  corresponding to the mean longitudes ,ti ( i = 1, 2, . . . , n )  is equal 
t o  the smallest power of the eccentricities and the sines of inclinations which appear in the 
coefficient of its cosine, which means that the D'Alembert's rule is verified. 

2. The only direction in which our expression of the disturbing function can be gener- 
alized deals with the powers of the eccentricities and the sines of the inclinations. 
An extension of our calculation up to the eight powers of the eccentricities and the sines 
of inclinations which is the precision required in order to build a complete first order gen- 
eral planetary theory which could be compared with the previous theories and up to the 
twelve powers of the eccentricities and the sines of inclinations which is the precision re- 
quired in order to go efficiently beyond such a theory could be easily carried out through 
the way we indicated, the only difficulty dealing with the length of the calculation itself. 

3. The values of the integers n and P depend upon the set  of planets we consider and no 
general rule may be formulated concerning them, each particular case involving its own 
system of values of n and p . In our solar system and present knowledge of the big planets, 
n cannot exceed 9. As for p ,  it is so much the more larger than the ratios uu, ( u , v  = 1,  2 .  . . . , 
u, v = n - 1, n )  of the semi major axis are  closer to 1 and it can reach a very high value 
when the a,, .'s are very close to 1. A literal development of our expression of the dis- 
turbing function may be obtained, through the way of harmonic analysis, by considering 
numerical values of the ratios uu,  at the very beginning, the coefficients being therefore 
functions of the eccentricities and sines of inclinations and it could lend to a generalization 
of the tables for the development of the disturbing function as they were previously settled 
by Brown and Shook6 and Brown and Brouwer.' 
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4. 
accuracy, in the restricted frame of Newton's law, the elimination of the short period 
t e rms  of a first order general planetary theory through Von Zeipel's method. In order 
to perform completely this elimination which will enlarge the results of our two pre- 
vious papers * v 9 ,  it would be however necessary to include the relativity effect and the 
asteroidal effect. We plan to investigate, later on, this matter. 

We have now at hand all the elements in order to perform with the highest degree of 
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